Browse wiki

From ISLAB/CAISR
Biases in electronic health records
Keywords Machine Learning, Electronic health records, Sample bias  +
Level Master  +
OneLineSummary To evaluate the impact of sample bias on the predictive value of machine learning models built using EHR data  +
Prerequisites Good knowledge of applied mathematics. An ability to implement state-of-the-art algorithms in a suitable programming environment. An interest in machine learning algorithms and medical data analysis.  +
References 1. Verheij, Robert A., et al. "Possible So1. Verheij, Robert A., et al. "Possible Sources of Bias in Primary Care Electronic Health Record Data Use and Reuse." Journal of medical Internet research 20.5 (2018). 2. Gianfrancesco, Milena A., et al. "Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data." JAMA internal medicine (2018). 3. Johnson, Alistair EW, et al. "MIMIC-III, a freely accessible critical care database." Scientific data 3 (2016): 160035.tabase." Scientific data 3 (2016): 160035.
StudentProjectStatus Open  +
Supervisors Awais Ashfaq + , Sławomir Nowaczyk +
TimeFrame Spring 2019  +
Title Biases in electronic health records  +
Categories StudentProject  +
Modification dateThis property is a special property in this wiki. 11 October 2018 04:53:18  +
hide properties that link here 
  No properties link to this page.
 

 

Enter the name of the page to start browsing from.