Browse wiki

From ISLAB/CAISR
Intelligible patient representation for outcome prediction of congestive heart failure patients
Keywords Machine Learning, Feature Engineering, Medical data analysis  +
Level Master  +
OneLineSummary Generating patient representation using EHR data  +
Prerequisites Good knowledge of applied mathematics. An ability to implement state-of-the-art algorithms in a suitable programming environment. An interest in machine learning algorithms and medical data analysis.  +
References 1. Miotto R, Li L, Kidd BA, Dudley JT. Dee1. Miotto R, Li L, Kidd BA, Dudley JT. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Scientific Reports. 2016;6:26094. doi:10.1038/srep26094. 2. Choi, Edward, et al. "Multi-layer representation learning for medical concepts." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016ledge Discovery and Data Mining. ACM, 2016
StudentProjectStatus Open  +
Supervisors Sławomir Nowaczyk + , Awais Ashfaq +
TimeFrame Winter 2017 / Spring 2018  +
Title Intelligible patient representation for outcome prediction of congestive heart failure patients  +
Categories StudentProject  +
Modification dateThis property is a special property in this wiki. 10 October 2018 08:32:06  +
hide properties that link here 
  No properties link to this page.
 

 

Enter the name of the page to start browsing from.