Browse wiki

From ISLAB/CAISR
Name of the new projectEstimating agricultural development indicators over large areas from satellite images – an approach using convolutional neural networks and transfer learning
Level Master  +
OneLineSummary In this project you will use deep learning models, specifically convolutional neural networks (CNN), to analyze satellite imagery to estimate agricultural development indicators.  +
Prerequisites Good knowledge of machine learning, convolutional neural networks and programming skills for implementing machine learning algorithms  +
References Xie, M., N. Jean, M. Burke, D. Lobell &Xie, M., N. Jean, M. Burke, D. Lobell & S. Ermon (2015) Transfer learning from deep features for remote sensing and poverty mapping. arXiv preprint arXiv:1510.00098. Jean, N., M. Burke, et al (2016) Combining satellite imagery and machine learning to predict poverty. Science, 353, 790-794.to predict poverty. Science, 353, 790-794.
StudentProjectStatus Open  +
Supervisors Mattias Ohlsson + , Thorsteinn Rögnvaldsson +
TimeFrame Fall 2019  +
Title Name of the new projectEstimating agricultural development indicators over large areas from satellite images – an approach using convolutional neural networks and transfer learning  +
Categories StudentProject  +
Modification dateThis property is a special property in this wiki. 1 October 2019 07:41:18  +
hide properties that link here 
  No properties link to this page.
 

 

Enter the name of the page to start browsing from.