Abstract
|
<p>This research aims to develop dat … <p>This research aims to develop data-driven methods that automatically exploit historical data in smart distribution grids for reliability evaluation, i.e., analyzing frequency of failures, and modeling components’ lifetime. The results enable power distribution companies to change from reactive maintenance to predictive maintenance by deriving benefits from historical data. In particular, the data is exploited for two purposes: (a) failure pattern discovery, and (b) reliability evaluation of power cables. To analyze failure characteristics it is important to discover which failures share common features, e.g., if there are any types of failures that happen mostly in certain parts of the grid or at certain times. This analysis provides information about correlation between different features and identifying the most vulnerable components. In this case, we applied statistical analysis and association rules to discover failure patterns. Furthermore, we propose an easy-to-understand visualization of the correlations between different factors representing failures by using an approximated Bayesian network. We show that the Bayesian Network constructed based on the interesting rules of two items is a good approximation of the real dataset. The main focus of reliability evaluation is on failure rate estimation and reliability ranking. In case of power cables, the limited amount of recorded events makes it difficult to perform failure rate modeling, i.e., estimating the function that describes changes in the rate of failure depending on age. Therefore, we propose a method for interpreting the results of goodness-of-fit measures with confidence intervals, estimated using synthetic data. To perform reliability ranking of power cables, in addition to the age of cables, we consider other factors. Then, we use the Cox proportional hazard model (PHM) to assess the impact of the factors and calculate the failure rate of each individual cable. In reliability evaluation, it is important to consider the fact that power cables are repairable components. We show that the conclusions about different factors in PHM and cables ranking will be misleading if one considers the cables as non-repairable components. The developed methods of (a) are applied on data from Halmstad Energi och Miljö (HEM Nät), Öresundskraft, Göteborg Energy, and Växjö Energy, four different distribution system operators in Sweden. The developed methods of (b) are applied on data from HEM Nät.</p>re applied on data from HEM Nät.</p>
|